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Abstract
A microscopic approach to the investigation of the three-dimensional Ising-
like system thermodynamics below the phase transition temperature Tc is
schematically presented within the framework of the higher non-Gaussian
approximation (ρ6 model) taking into account the corrections to scaling.
A microscopic analogue of the Landau free energy is calculated. Explicit
expressions for the thermodynamic characteristics are obtained as functions of
the temperature and microscopic parameters of the system. The thermodynamic
characteristics near Tc and their amplitudes are given for various values of the
effective radius of the exponentially decreasing interaction potential (including
the values corresponding to the nearest-neighbour interaction, the interaction
between the nearest and next-nearest neighbours, and that between the nearest,
next-nearest, and third neighbours). The evolutions of the free energy of the
system at the phase transition point, average spin moment, and specific heat
with increasing ratio of the potential effective radius to the simple cubic lattice
constant are plotted. The results of calculations and their comparison with other
authors’ data show that the ρ6 model provides a better quantitative description
of the critical behaviour of a three-dimensional Ising magnetic than the ρ4

model.

1. Introduction

This research is devoted to the theory of phase transitions and critical phenomena,which remain
the subjects of wide-ranging studies (see, for example, [1–5]). The approach to the description
1 Author to whom any correspondence should be addressed.
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of second-order phase transitions based on the method of collective variables (CV) [6] has
been developed further. The object of investigation is a three-dimensional (3D) Ising-like
system on a simple cubic lattice with an exponentially decreasing interaction potential (see,
for example, [7, 8]). The Ising model, which is simple and convenient for mathematical
analysis, is widely used in the theory of phase transitions for analysis of properties of various
magnetic and nonmagnetic systems (ferromagnets, antiferromagnets, ferroelectrics, binary
mixtures, lattice models of liquids, etc). The partition function of the spin system in the CV
representation is written in the form of an integral with respect to these CV [6, 8, 9]. An
important factor in describing the system behaviour near the phase transition temperature Tc

by the CV method is the use of non-Gaussian measure densities. A non-Gaussian density of
measure at a zero external field is represented as an exponential function of the CV ρk, the
argument of which contains, along with the quadratic term, higher even powers of the variable
with the corresponding coupling constants. The simplest non-Gaussian measure density is
the quartic one (the ρ4 model) with the second and the fourth powers of the variable in the
exponent. The sextic measure density (the ρ6 model) includes the sixth power of the variable
in addition to the second and fourth powers, etc.

The present publication complements our previous works [8, 9], in which the study was
based on the CV method. In [9], the ρ4 model was used for calculating the thermodynamic
functions of the classical n-vector 3D magnetic model without taking into account confluent
corrections (corrections to scaling). The crossover from Gaussian or non-Gaussian to Ising
forms was discussed in [8], where the influence of the complication of the measure density on
the behaviour of the critical exponent of the correlation length was considered. The simple ρ4

model describes the main features of the second-order phase transition [10–13]. A more correct
quantitative description of critical properties of a 3D Ising ferromagnet by the CV method can
be given using the sextic measure density [8, 14, 15]. The analytic method for calculating
the 3D Ising-like system thermodynamics below Tc (the low-temperature region) is developed
in the present paper on the basis of this higher non-Gaussian approximation (the ρ6 model).
A technique for taking into account the first confluent correction is elaborated in the course
of calculation of thermodynamic characteristics. The dependences of these characteristics on
temperature and microscopic parameters of the system are plotted. The case of T > Tc was
considered in [8].

The real task of the critical phenomena physics at the present time is elaborating the
methods giving quantitative descriptions of the critical behaviour of the system without using
any adjustable parameters. The approach suggested in the present paper allows us to perform
the calculations for an Ising ferromagnet in real 3D space on the microscopic level without
any adjustable parameters. In this case, the new special functions [8, 14–17] appearing in the
construction of the phase transition theory using the sextic measure density are exploited. We
hope that our explicit representations and plots will provide useful benchmarks in studying the
dependence of the thermodynamic functions of 3D Ising-like systems on the parameters of the
interaction potential and characteristics of the crystal lattice.

2. Calculation scheme for the free energy of the system below the phase transition
temperature

As in the case of T > Tc [8], we shall calculate the free energy of the system by separating
the contributions from short- and long-wave modes of spin moment density oscillations. For
T < Tc, we have

F = F0 + FC R + FI G R (1)
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where F0 = −kT N ln 2 corresponds to the free energy of N noninteracting spins, FC R to
the contribution of short-wave oscillation modes to the free energy of the system (the critical
regime (CR) region), and FI G R to the contribution of long-wave oscillation modes (the region
of the inverse Gaussian regime (IGR)).

While calculating the free energy of the system, we shall use extensively the solutions
of recurrence relations (RR) between the coefficients of effective sextic distributions (see, for
example, [8, 18]). In the CR region, the solutions of RR of the renormalization group (RG)
type are valid. In contrast to the limiting Gaussian regime (LGR) observed for T > Tc, the IGR
is described by a non-Gaussian density of measure. It should be emphasized that at T < Tc,
the system acquires a nonzero order parameter. It is not introduced as an independent quantity,
but is determined as a result of direct calculation. This is possible since the set of CV contains
the variable ρ0 associated with the order parameter. The distribution acquires a Gaussian form
only as a result of separating the free energy of the ordering.

Calculating the partition function of the Ising model, we divide the CV phase space into
layers with the division parameter s and use the average value of the Fourier transform of
the interaction potential (the arithmetic mean in the case given) corresponding to the given
layer [6, 9]. Short- and long-wave modes of spin density oscillations at T < Tc are separated by
the layer number µτ . The CR takes place for layers of the CV phase space with n � µτ , while
the IGR is observed for n > µτ . The condition for determining µτ is the equality [7, 15, 19]

rµτ +1 − r (0)

r (0)
= δ. (2)

Here δ is a constant quantity (δ � 1), rµτ +1 is determined from the solutions of RR, and r (0)

corresponds to a coordinate of the fixed point [8, 18]. In numerical calculations, we shall put
δ = 1, which is in accord with the condition for δ used by us for T > Tc [8]. In analogy with
the case T > Tc, we obtain the following expression for µτ :

µτ = µ(0)
τ − m�1 |τ |�1 µ(0)

τ = − ln |τ |
ln E1

+ µ0 − 1 µ0 = mc. (3)

The quantities m�1 , �1, and mc coincide with the corresponding quantities for T > Tc [18],
τ = (T −Tc)/Tc, and E1 is the largest eigenvalue of the matrix of the RG linear transformation.

The expression for the layer µτ determining the point of exit of the system from the CR
region at T < Tc makes it possible to find FC R as well as FI G R . We shall consider these
calculations schematically. The free energy of the system is obtained by using the values of
the critical temperature depending on microscopic parameters. The equation for the critical
temperature in the case of the ρ6 model as well as the variation of this temperature with
increasing ratio of the potential effective radius to the lattice constant are given in [8]. It
should be noted that the thermodynamic characteristics are calculated taking into account the
term proportional to |τ |�1 and determining the first confluent correction.

3. Contribution to the thermodynamic functions of the system from the critical regime
region

As in the case of T > Tc, the contribution FC R to the free energy of the system from the CR
region is calculated through the summation of partial free energies over the layers of the CV
phase space. Using formulae (3) and singling out temperature explicitly in the calculations,
we arrive at the following expression:

FC R = −kT N ′[γ (C R)

0 − γ1|τ | + γ2|τ |2 − γ
(C R)(0)−
3 |τ |3ν − γ

(C R)(1)−
3 |τ |3ν+�1] (4)



11704 I R Yukhnovskii et al

Table 1. Universal factors occurring in the expressions for the coefficients γ
(C R)(l)−
3 , γ

(l)
I G R , and

γ
(l)−
3 (l = 0, 1).

s γ̄
(C R)(0)−
3 γ̄

(C R)(1)−
3 γ̄

(0)
I G R γ̄

(1)
I G R γ̄

(0)−
3 γ̄

(1)−
3

2.0000 0.7382 6.7881 2.4980 −0.0087 1.7599 −6.7968
2.7349 0.4188 5.6159 3.1838 1.9416 2.7650 −3.6743
3.0000 0.2899 5.2219 3.3972 2.1505 3.1073 −3.0714

where ν = ln s/ ln E1 is the critical exponent of the correlation length, N ′ , γ
(C R)

0 , γ1,
and γ2 (which are functions of microscopic parameters of the system) are the same as for
T > Tc [8, 18]. We present the coefficients γ

(C R)(l)−
3 in the form in which the universal

factor γ̄
(C R)(l)−
3 independent of microscopic parameters of the system is separated. The latter

parameters in our case include the parameters of the exponentially decreasing interaction
potential (the effective radius b of the potential and its Fourier transform �̃(0) for zero value
of the wavevector) as well as the constant c of the simple cubic lattice. We have

γ
(C R)(l)−
3 = c3

νcl
�1

γ̄
(C R)(l)−
3 l = 0, 1

γ̄
(C R)(0)−
3 = γ − γ̄

(C R)(1)−
3 = γ −

�1
− �0(γ

−
11 + 3νγ −).

(5)

Here

γ − = f (0)

C R

1 − s−3
− f (1)

C Rϕ
−1/2
0 f0δ

1 − E1s−3
+

f (7)
C Rϕ−1

0 ( f0δ)
2

1 − E2
1s−3

γ −
�1

= f (2)
C Rϕ−1

0

1 − E2s−3
− f (4)

C Rϕ
−3/2
0 f0δ

1 − E1 E2s−3
+

f (8)
C Rϕ−2

0 ( f0δ)
2

1 − E2
1 E2s−3

γ −
11 = f (1)

C Rϕ
−1/2
0 f0δ

1 − E1s−3
− 2 f (7)

C Rϕ−1
0 ( f0δ)

2

1 − E2
1 s−3

.

(6)

The nonuniversal factors cν , c�1 , the factor �0, the eigenvalues El of the matrix of the RG
transformation, three coordinates of the fixed point and the quantities characterizing them
(including f0 and ϕ0), as well as the quantities f (i)

C R depending on the values of the variables
at the fixed point, are presented in [8, 18]. The universal factors γ̄

(C R)(l)−
3 (l = 0, 1) of the

coefficients γ
(C R)(l)−
3 are given in table 1 for some optimal values of the RG parameter s [8, 14].

For s = s∗ = 2.7349, the average value of the coefficient in the term with the second power of
the variable in the expression for the effective measure density is equal to zero at a fixed point
(in the ρ4 model, this corresponds to s∗ = 3.5862).

Differentiating expression (4) for FC R with respect to temperature,we obtain the following
expressions for the entropy SC R , internal energy UC R , and specific heat CC R in the CR region:

SC R = k N ′[s(C R)(0) − c0|τ | + u(C R)(0)−
3 |τ |1−α + u(C R)(1)−

3 |τ |1−α+�1 ]

UC R = kT N ′[γ1 − u1|τ | + u(C R)(0)−
3 |τ |1−α + u(C R)(1)−

3 |τ |1−α+�1]

CC R = k N ′[c0 − c(C R)(0)−
3 |τ |−α − c(C R)(1)−

3 |τ |�1−α]

(7)
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where α = 2 − 3ν is the critical exponent of the specific heat, and

u(C R)(l)−
3 = c3

νcl
�1

ū(C R)(l)−
3 l = 0, 1

ū(C R)(0)−
3 = 3νγ̄

(C R)(0)−
3

ū(C R)(1)−
3 = (3ν + �1)γ̄

(C R)(1)−
3

c(C R)(l)−
3 = c3

νcl
�1

c̄(C R)(l)−
3

c̄(C R)(0)−
3 = 3ν(3ν − 1)γ̄

(C R)(0)−
3

c̄(C R)(1)−
3 = (3ν + �1)(3ν + �1 − 1)γ̄

(C R)(1)−
3 .

(8)

The remaining coefficients are defined by corresponding expressions obtained from an analysis
of temperatures above Tc [8, 18].

4. Contribution to the thermodynamic functions of the system from the region of the
inverse Gaussian regime

We shall write the final result for the contribution of the IGR region

FI G R = −kT N ′s−3(µτ +1) ln[
√

2Q(Pµτ
)] − kT ln Zµτ +1 (9)

to the free energy of the system. The calculations of the first and second terms in (9) associated
with the calculations of

√
2Q(Pµτ

) =
(

4s3uµτ
s−4µτ

π4C(hµτ
, αµτ

)

)1/4

I0(ηµτ
, ξµτ

) (10)

and

Zµτ +1 =
∫

exp

[
−1

2

∑
k�Bµτ +1

dµτ +1(k)ρkρ−k

−
3∑

l=2

a(µτ +1)

2l

(2l)!Nl−1
µτ +1

∑
k1,...,k2l �Bµτ +1

ρk1 · · · ρk2l δk1+···+k2l

]
(dρ)Nµτ +1 (11)

are described in detail in [15, 19] (see [12] for the ρ4 model). We obtain

FI G R = −kT N ′[γ (0)
I G R|τ |3ν + γ

(1)
I G R |τ |3ν+�1 ]

γ
(l)
I G R = γ

(l)(µτ )

3 + γ
(l)〈σ 〉
3 l = 0, 1.

(12)

The term γ
(l)(µτ )

3 defines the free energy after the exit from the CR, and γ
(l)〈σ 〉
3 defines the free

energy of ordering. These terms can be determined by the formulae

γ
(l)(µτ )

3 = γ (l)
g + γ (l)

ρ γ (l)
g = c3

νcl
�1

γ̄ (l)
g

γ (l)
ρ = c3

νcl
�1

γ̄ (l)
ρ γ

(l)〈σ 〉
3 = c3

νcl
�1

γ̄
(l)〈σ 〉
3 .

(13)

The expressions for the quantities γ̄ (l)
g , γ̄ (l)

ρ , γ̄ (l)〈σ 〉
3 independent of the microscopic parameters

are given in [19]. The values of these quantities are contained in tables 2 and 3.
The entropy SI G R , internal energy UI G R , and specific heat CI G R corresponding to the IGR

can be written in the form

SI G R = Sµτ
+ S〈σ 〉 UI G R = Uµτ

+ U〈σ 〉 CI G R = Cµτ
+ C〈σ 〉. (14)
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Table 2. The universal parts γ̄
(l)
g and γ̄

(l)
ρ of the coefficients γ

(l)
g and γ

(l)
ρ (see (13)).

s γ̄
(0)
g γ̄

(1)
g γ̄

(0)
ρ γ̄

(1)
ρ

2.0000 −0.3024 −1.2299 1.0386 5.2424
2.7349 0.0039 0.1930 1.0227 3.3225
3.0000 0.0986 0.4368 1.0179 2.8748

Table 3. Values of the universal quantities γ̄
(l)(µτ )
3 and γ̄

(l)〈σ 〉
3 .

s γ̄
(0)(µτ )
3 γ̄

(1)(µτ )
3 γ̄

(0)〈σ 〉
3 γ̄

(1)〈σ 〉
3

2.0000 0.7362 4.0126 1.7618 −4.0212
2.7349 1.0265 3.5155 2.1572 −1.5739
3.0000 1.1164 3.3116 2.2808 −1.1610

The components of these thermodynamic characteristics satisfy the following relations:

Sη = −k N ′[u(0)(η)

3 |τ |1−α + u(1)(η)

3 |τ |1−α+�1 ]

Uη = −kT N ′[u(0)(η)

3 |τ |1−α + u(1)(η)

3 |τ |1−α+�1 ]

Cη = k N ′[c(0)(η)

3 |τ |−α + c(1)(η)

3 |τ |�1−α]

u(l)(η)

3 = c3
νcl

�1
ū(l)(η)

3 l = 0, 1

ū(0)(η)

3 = 3νγ̄
(0)(η)

3 ū(1)(η)

3 = (3ν + �1)γ̄
(1)(η)

3

c(l)(η)

3 = c3
νcl

�1
c̄(l)(η)

3

c̄(0)(η)

3 = 3ν(3ν − 1)γ̄
(0)(η)

3

c̄(1)(η)

3 = (3ν + �1)(3ν + �1 − 1)γ̄
(1)(η)

3 .

(15)

The exponent η can assume two values: µτ and 〈σ 〉. The quantities γ̄
(l)(µτ )

3 = γ̄ (l)
g + γ̄ (l)

ρ (l =
0, 1) are presented in table 3. The coefficients γ̄

(l)〈σ 〉
3 are universal factors appearing in γ

(l)〈σ 〉
3

(see (13) and table 3).
Thus, we have calculated free energy in the IGR region. The values of the universal

factors γ̄
(l)
I G R = γ̄

(l)(µτ )

3 + γ̄
(l)〈σ 〉
3 of the coefficients γ

(l)
I G R = c3

νcl
�1

γ̄
(l)
I G R in FI G R (12) are given in

table 1. Proceeding from the expression (12) for FI G R , we have obtained other thermodynamic
functions corresponding to the IGR. The expression (12) contains the free energy of ordering
determined by integration with respect to CV ρ0, whose average value is proportional to the
order parameter which is an important characteristic of the phase transition.

5. Microscopic analogue of the Landau free energy and order parameter of a 3D
Ising-like system

The role of the order parameter for the system under investigation is played by the average spin
moment. It is associated with the existence of a nonzero value ρ̄0 below the phase transition
temperature, for which the integrand of the expression

Zµτ +1 = e−βF ′
µτ +1

∫
exp

[
β
√

Nρ0h + B̃ρ2
0 − G

N
ρ4

0 − D

N2
ρ6

0

]
dρ0 (16)

attains its extremum value. Here β = 1/(kT ) is the inverse temperature; h is determined by
the value of the constant external magnetic field H introduced in our analysis (h = µBH, µB
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being the Bohr magneton). The expression for −β F ′
µτ +1 corresponding to the contribution to

the free energy of the system from CV ρk with the values of wavevectors k → 0 (but not equal
to zero) as well as the coefficients

B̃ = B̃(0)|τ |2νβ�̃(0)(1 + B̃(1)|τ |�1)

G = G(0)|τ |ν(β�̃(0))2(1 + G(1)|τ |�1)

D = D(0)(β�̃(0))3(1 + D(1)|τ |�1)

(17)

are given in [19]. Carrying out in (16) the substitution of the variable

ρ0 = √
Nρ (18)

we obtain

Zµτ +1 = e−βF ′
µτ +1

√
N

∫
e−N E0(ρ) dρ (19)

and the evaluation of the order parameter is reduced to determining the extremum point ρ̄ of
the expression

E0(ρ) = Dρ6 + Gρ4 − B̃ρ2 − βhρ. (20)

The value of ρ̄ coincides with the average value of ρ corresponding to the equilibrium value of
the order parameter [6, 14, 15]. The expression for E0(ρ) defines the fraction of free energy
associated with the order parameter. It corresponds to a microscopic analogue of the Landau
free energy. The quantity Zµτ +1 will be expressed in terms of E0(ρ̄) (coinciding in form with
the expansion of the free energy into a power series in the order parameter) by using the steepest
descent method for evaluating the integral (19) (see [19]).

The expression (20) was derived by successive elimination of ‘insignificant’ variables ρk

with k �= 0, which allowed us to calculate the coefficients of E0(ρ) (see table 4). Numerical
values in table 4 are given for some values of the effective radius b of the potential and
optimal values of the RG parameter s. As in the case of T > Tc [8, 18], the parabolic
approximation of the Fourier transform of the exponentially decreasing potential of interaction
in the region of small values of wavevectors for b = bI = c/(2

√
3) corresponds to the

analogous approximation of the Fourier transform for the potential of interaction between
nearest neighbours, nearest and next-nearest neighbours for b = bII = 0.3379c, and first,
second, and third neighbours for b = bIII = 0.3584c. Thus, there is no need to postulate
a temperature dependence of the coefficients in formula (20) (as in the case of the Landau
expansion) since the analytic form of their dependence on the temperature and microscopic
parameters of the system has been obtained as a result of direct calculations. In contrast to
case for the Landau theory, the temperature dependence of these coefficients is nonanalytic
(see (17)).

Let us go over to direct calculation of the average spin moment. The point ρ̄ can be
determined from the condition for the extremum ∂ E0(ρ)/∂ρ = 0 or

6Dρ̄5 + 4Gρ̄3 − 2B̃ρ̄ − h

kT
= 0. (21)

For h = 0, we obtain the biquadratic equation

6Dρ̄4 + 4Gρ̄2 − 2B̃ = 0 (22)

in which the substitution of the variable

ρ̄2 = y (23)

leads to the equation

6Dy2 + 4Gy − 2B̃ = 0. (24)
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Table 4. Values of quantities determining the coefficients in the expression for a microscopic
analogue of the Landau free energy.

b bI bII bIII c 2c

s = 2.0000

B̃(0) 1.0106 0.9530 0.9305 0.7258 0.7149

B̃(1) −0.2733 −0.3959 −0.4420 −0.8188 −0.8375
G(0) 0.0550 0.0857 0.1010 1.9382 15.3880
G(1) −0.8919 −1.2918 −1.4423 −2.6720 −2.7330
D(0) 0.0009 0.0023 0.0033 1.5614 99.9318
D(1) −0.6952 −0.9377 −1.0470 −1.9396 −1.9839

s = 2.7349

B̃(0) 0.9417 0.8888 0.8683 0.6865 0.6768

B̃(1) −0.4451 −0.5124 −0.5377 −0.7445 −0.7550
G(0) 0.0690 0.1074 0.1267 2.4478 19.4434
G(1) −1.1718 −1.3491 −1.4157 −1.9601 −1.9876
D(0) 0.0012 0.0031 0.0044 2.0825 133.281
D(1) −0.8853 −1.0193 −1.0696 −1.4809 −1.5017

s = 3.0000

B̃(0) 0.9115 0.8610 0.8415 0.6697 0.6605

B̃(1) −0.4755 −0.5321 −0.5533 −0.7261 −0.7348
G(0) 0.0732 0.1141 0.1346 2.6087 20.7264
G(1) −1.1967 −1.3392 −1.3926 −1.8275 −1.8495
D(0) 0.0013 0.0033 0.0047 2.2185 141.986
D(1) −0.9113 −1.0199 −1.0606 −1.3918 −1.4085

Table 5. Coefficients of the average spin moment 〈σ 〉 in (25) for some values of the effective radius
b of the potential and the RG parameter s.

b bI bII bIII c 2c

s = 2.0000
〈σ 〉(0) 2.7329 2.0684 1.8700 0.3747 0.1321
〈σ 〉(1) 0.2499 0.3619 0.4040 0.7485 0.7656

s = 2.7349
〈σ 〉(0) 2.3854 1.8027 1.6288 0.3248 0.1145
〈σ 〉(1) 0.3034 0.3493 0.3666 0.5076 0.5147

s = 3.0000
〈σ 〉(0) 2.2861 1.7269 1.5600 0.3107 0.1095
〈σ 〉(1) 0.3046 0.3409 0.3545 0.4651 0.4707

Solving this equation and separating temperature explicitly, we arrive at the following formula
for the average spin moment 〈σ 〉 = ρ̄ = √

y:

〈σ 〉 = 〈σ 〉(0)|τ |β(1 + 〈σ 〉(1)|τ |�1). (25)

Here β = ν/2 is the critical exponent of the average spin moment, and the coefficients
〈σ 〉(l) [19] are given in table 5.

The curves describing the dependence of 〈σ 〉 on τ for various values of b are shown in
figure 1. Here and below, the curves are plotted for the RG parameter s = 3.
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Figure 1. The temperature dependence of the average spin moment of the system in the ρ6

model approximation for various values of the effective radius b of the potential: bI = c/(2
√

3);
bII = 0.3379c; bIII = 0.3584c; c; and 2c.

6. Thermodynamic characteristics as functions of temperature and microscopic
parameters of the system

Let us now find total expressions for the thermodynamic functions of an Ising-like system at
T < Tc in the approximation of the ρ6 model taking into account the first confluent correction
(the case H = 0).

The contributions from the CR and IGR regions to the free energy of the 3D Ising model
near Tc obtained above allow us to write its total free energy (1) in the form

F = −kT N ′[γ0 − γ1|τ | + γ2|τ |2 + γ
(0)−
3 |τ |3ν + γ

(1)−
3 |τ |3ν+�1 ]. (26)

All the coefficients in expression (26) are functions of microscopic parameters of the system,
i.e., the effective radius b of the potential, the Fourier transform �̃(0) of the potential, and
the lattice constant c. The coefficients γ0, γ1, and γ2 can be determined from expressions
for corresponding quantities in the high-temperature region (see [8, 18]). In contrast to
γ

(l)−
3 (l = 0, 1), their values are independent of whether calculations are made for a temperature

above or below the phase transition point. The coefficients γ
(l)−
3 have the form of a product of

the quantity γ̄
(l)−
3 , which is universal relative to microscopic parameters, and the nonuniversal

factor c3
νcl

�1
, which is a function of these parameters:

γ
(l)−
3 = c3

νcl
�1

γ̄
(l)−
3 l = 0, 1

γ̄
(l)−
3 = −γ̄

(C R)(l)−
3 + γ̄

(l)
I G R γ̄

(l)
I G R = γ̄ (l)

g + γ̄ (l)
ρ + γ̄

(l)〈σ 〉
3 .

(27)

Numerical values of the coefficients γ̄
(l)−
3 are given in table 1.

Proceeding from the expression (26) for free energy F , we can find other thermodynamic
functions for T < Tc. For example, the following expressions are valid for the entropy S,
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internal energy U , and specific heat C:

S = k N ′[s(0) − c0|τ | − u(0)−
3 |τ |1−α − u(1)−

3 |τ |1−α+�1 ]

U = kT N ′[γ1 − u1|τ | − u(0)−
3 |τ |1−α − u(1)−

3 |τ |1−α+�1 ]

C = k N ′[c0 + c(0)−
3 |τ |−α + c(1)−

3 |τ |�1−α]

(28)

where s(0), c0, and u1 coincide with the corresponding quantities for T > Tc [8, 18], while the
structure of the remaining coefficients in terms of universality is determined by the relations

u(l)−
3 = c3

νcl
�1

ū(l)−
3 l = 0, 1

ū(0)−
3 = 3νγ̄

(0)−
3 ū(1)−

3 = (3ν + �1)γ̄
(1)−
3

c(l)−
3 = c3

νcl
�1

c̄(l)−
3

c̄(0)−
3 = 3ν(3ν − 1)γ̄

(0)−
3

c̄(1)−
3 = (3ν + �1)(3ν + �1 − 1)γ̄

(1)−
3 .

(29)

Representing the specific heat from (28) by the dependence

C

k N ′ = A−

α
|τ |−α(1 + αa−

c |τ |�1) + B−

A− = c3
ναc̄(0)−

3

a−
c = c�1

α

c̄(1)−
3

c̄(0)−
3

B− = c0

(30)

(similar to the T > Tc case), we obtain the following expressions for ratios of the leading
critical amplitudes and the amplitudes of corrections to scaling at temperatures above and
below the phase transition temperature:

A+

A− = c̄(0)+
3

c̄(0)−
3

a+
c

a−
c

= c̄(1)+
3

c̄(1)−
3

c̄(0)−
3

c̄(0)+
3

. (31)

It should be noted that B− is equal to B+ calculated for T > Tc. The amplitudes A− and a−
c

are given in table 6.
Equation (21) makes it possible to calculate the susceptibility of the system per particle,

i.e., χ = µB(∂〈σ 〉/∂H):

χ = �−|τ |−γ (1 + a−
χ |τ |�1)

µ2
B

�̃(0)
. (32)

Here γ = 2ν is the critical exponent of the susceptibility. The values of the amplitudes �− and
a−

χ [19] are given in table 6. Our estimates for the leading critical amplitude �− (see table 6;
b = bI) agree closely with the low-temperature susceptibility amplitude �− = 0.220 ± 0.004
calculated by Liu and Fisher [20].

Using the results of calculations for T > Tc [8] as well as the results obtained here, we
can plot graphs of the temperature dependences of the entropy S/k N , specific heat C/k N ,
and susceptibility χ (in units of µ2

B/A, A = �̃(0)/[8π(b/c)3] being the interaction potential
constant) near Tc for various values of the effective radius b of the potential (see figures 2–4).
The method of calculation developed here allows us to trace the evolution of thermodynamic
characteristics with increasing ratio of the effective radius b of the potential to the lattice
constant c. Such an evolution of the free energy F/N of the system (in units of A) at the phase
transition point (τ = 0) as well as those of the average spin moment 〈σ 〉 for τ = −10−3 and
the specific heat C/k N of the system for |τ | = 10−3 are presented in figures 5–7.



Critical behaviour of 3D Ising-like systems studied using the ρ6 model: II. T < Tc 11711

Figure 2. The dependence of the entropy of the system on τ . The notation is the same as in figure 1.

Table 6. Numerical values of the amplitudes A− , a−
c , �−, and a−

χ .

b bI bII bIII c 2c

s = 2.0000
A− 1.9734 1.8071 1.7436 1.2012 1.1741
a−

c 7.2567 10.5104 11.7347 21.7395 22.2353
�− 0.2133 0.2262 0.2317 0.2970 0.3015
a−
χ 0.1872 0.2711 0.3027 0.5608 0.5736

s = 2.7349
A− 1.2026 1.1027 1.0648 0.7486 0.7328
a−

c 8.1288 9.3588 9.8206 13.5975 13.7882
�− 0.2341 0.2480 0.2539 0.3211 0.3257
a−
χ 0.3536 0.4071 0.4272 0.5915 0.5998

s = 3.0000
A− 1.0331 0.9484 0.9164 0.6506 0.6373
a−

c 7.9599 8.9081 9.2633 12.1558 12.3022
�− 0.2437 0.2580 0.2640 0.3318 0.3364
a−
χ 0.3884 0.4346 0.4519 0.5931 0.6002

7. Conclusions

Thus, the critical behaviour of a one-component spin system is described on the basis of sextic
density of measure (ρ6 model). As compared with the quartic approximation (ρ4 model),
the ρ6 model ensures a more correct quantitative pattern for this description. This follows
from the results of our previous calculations (see, for example, [8, 14, 15]) as well as from
the temperature dependences of the average spin moment 〈σ 〉 (figure 8) and the specific heat
C/k N (figure 9) of the 3D Ising model. The calculations were made for a simple cubic lattice
in zero external field with the interaction between nearest neighbours. In our calculations, we
put b = bI = c/(2

√
3). The ρ6 model approximation includes the first confluent correction,
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Figure 3. The specific heat of the spin system for various values of b. The notation is the same as
in figure 1.

Figure 4. The temperature dependence of the susceptibility of the system for various values of b.
The notation is the same as in figure 1.

while the approximation on the basis of the ρ4 model takes into account the first and second
confluent corrections (see [11–13]). The straight line 1 in figure 8 for the average spin moment
corresponds to the ρ4 model, line 2 to the ρ6 model, and line 3 to the results obtained by Liu
and Fisher [20] for τ = |T − Tc|/Tc. The high-temperature region in figure 9 is represented
by the curves 1, 2, and 3, while the low-temperature region is represented by the curves 1′,
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Figure 5. The dependence of the free energy of the system at the phase transition point (τ = 0) on
the ratio of the effective radius b of the exponentially decreasing interaction potential to the simple
cubic lattice constant c.

Figure 6. The behaviour of the average spin moment for τ = −10−3 with increasing ratio b/c.

Figure 7. The evolution of the specific heat of the system for |τ | = 10−3 with increasing ratio b/c.

2′, and 3′. The curves 1 and 1′were obtained on the basis of the ρ4 model, curves 2 and 2′ in
the ρ6 model approximation, and curves 3 and 3′correspond to the results obtained by Liu and
Fisher [20]. It should be noted that the latter carried out a new numerical analysis of leading
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Figure 8. The temperature dependence of the order parameter of the 3D Ising model for a simple
cubic lattice. Straight line 1 corresponds to the ρ4 model, line 2 to the ρ6 model, and line 3 to the
results obtained in [20].

Figure 9. The dependence of the specific heat of the system on τ = |T − Tc|/Tc. Curves 1, 2, and
3 correspond to T > Tc; curves 1′, 2′, and 3′correspond to T < Tc. Curves 1 and 1′correspond
to the ρ4 model, curves 2 and 2′correspond to the ρ6 model, and curves 3 and 3′correspond to the
results obtained in [20].

critical amplitudes of the susceptibility, correlation length, specific heat, and spontaneous
magnetization of 3D nearest-neighbour sc (simple cubic), bcc (body-centred cubic), and fcc
(face-centred cubic) Ising models, as well as universal relations between these amplitudes.
Modern estimates of the critical temperature and exponents in [20] are used in conjunction
with biased inhomogeneous differential approximants to extrapolate the longest available series
expansions to find the critical amplitudes. As is clearly seen from figures 8 and 9, the plots for
the ρ6 model agree more closely with the Liu and Fisher’s results than the estimates in the ρ4

model approximation.
The CV method makes it possible to carry out the approximate calculation of the partition

function of the system and to obtain universal (critical exponents) and nonuniversal quantities
(expressions for leading critical amplitudes and the amplitudes of confluent corrections to
thermodynamic characteristics) by using a unified approach. The results of calculations for a
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3D Ising system on the basis of the ρ4 and ρ6 models are in accord with the results obtained by
other authors. For example [14, 15], we found the critical exponents of the correlation length
ν = 0.637, the specific heat α = 0.088, the average spin moment β = 0.319, the susceptibility
γ = 1.275, and the exponent of the first correction to scaling �1 = 0.525 (ρ6 model, s = s∗),
as well as universal ratios of critical amplitudes of the specific heat A+/A− = 0.435, the
susceptibility �+/�− = 6.967, and their combinations P = [1 − A+/A−]/α = 3.054,
R+

c = A+�+/[s3
0(〈σ 〉(0))2] = 0.098 (ρ4 model, s = s∗), where s0 = π

√
2b/c, 〈σ 〉(0) is the

critical amplitude of the average spin moment (see (25)). These estimates agree with the
values ν = 0.630, α = 0.110, β = 0.325, γ = 1.241, �1 = 0.498, A+/A− = 0.465,
�+/�− = 5.12, P = 3.90, R+

c = 0.052 obtained by using the field-theory approach [21–23]
as well as with the values ν = 0.638, α = 0.125, β = 0.312, γ = 1.250, �1 = 0.50,
A+/A− = 0.51, �+/�− = 5.07, R+

c = 0.059 calculated with the help of high-temperature
expansions [24–28]. The methods existing at present make it possible to calculate universal
quantities to a quite high degree of accuracy (see, for example, [3, 5, 20, 29]). The advantage
of the method under investigation lies in the possibility of obtaining and analysing expressions
for thermodynamic characteristics as functions of microscopic parameters of the system.
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